Existence of weak solutions for the Stefan problem with anisotropic Gibbs-Thomson law

نویسندگان

  • Harald Garcke
  • Stefan Schaubeck
چکیده

The Stefan problem with Gibbs-Thomson law describes solidification phenomena for pure substances. In applications the surface energy is anisotropic leading to an anisotropic Gibbs-Thomson law. We show the existence of weak solutions to the Stefan problem with anisotropic Gibbs-Thomson law using an implicit time discretization, and variational methods in an anisotropic BV setting. Our main result generalizes an existence result of Luckhaus to the anisotropic case.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximation of Crystalline Dendritegrowth in Two Space

The phase transition between solid and liquid in an undercooled liquid leads to dendritic growth of the solid phase. The problem is modelled by the Stefan problem with a modiied Gibbs-Thomson law, which includes the anisotropic mean curvature corresponding to a surface energy that depends on the direction of the interface normal. A nite element method for discretization of the Stefan problem is...

متن کامل

Approximation of Crystalline Dendrite Growth in Two Space Dimensions

Abstract. The phase transition between solid and liquid in an undercooled liquid leads to dendritic growth of the solid phase. The problem is modelled by the Stefan problem with a modified Gibbs-Thomson law, which includes the anisotropic mean curvature corresponding to a surface energy that depends on the direction of the interface normal. A finite element method for discretization of the Stef...

متن کامل

Finite element approximation of one-sided Stefan problems with anisotropic, approximately crystalline, Gibbs-Thomson law

We present a finite element approximation for the one-sided Stefan problem and the one-sided Mullins–Sekerka problem, respectively. The problems feature a fully anisotropic Gibbs–Thomson law, as well as kinetic undercooling. Our approximation, which couples a parametric approximation of the moving boundary with a finite element approximation of the bulk quantities, can be shown to satisfy a sta...

متن کامل

THE STEFAN PROBLEM WITH KINETIC FUNCTIONS AT THE FREE BOUNDARY

This paper considers a class of one-dimensional solidification problem in which kinetic undercooling is incorporated into the temperature condition at the interface. A model problem with nonlinear kinetic law is considered. The main result is an existence theorem. The mathematical effects of the kinetic term are discussed

متن کامل

On stable parametric finite element methods for the Stefan problem and the Mullins-Sekerka problem with applications to dendritic growth

We introduce a parametric finite element approximation for the Stefan problem with the Gibbs–Thomson law and kinetic undercooling, which mimics the underlying energy structure of the problem. The proposed method is also applicable to certain quasi-stationary variants, such as the Mullins–Sekerka problem. In addition, fully anisotropic energies are easily handled. The approximation has good mesh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011